Biohunt Grants



Query for: TTCAAAACCCTCCATGGTTTACAGAACCCTTTTAAGAACTGTAAGCCTTGTGAGGTTCGGCAGGTGTTATTTTCCTCTTTGCAGTT

Blast tool is based on blast.ncbi.nlm.nih.gov


BLASTN 2.3.0+


Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DNA sequences", J
Comput Biol 2000; 7(1-2):203-14.



Database: homo-hairpin.fasta
           1,881 sequences; 154,002 total letters



Query= TTCAAAACCCTCCATGGTTTACAGAACCCTTTTAAGAACTGTAAGCCTTGTGAGGTTCGGCAGGTGTT
ATTTTCCTCTTTGCAGTT

Length=86
                                                                      Score     E
Sequences producing significant alignments:                          (Bits)  Value

[15243]hsa-mir-4460  MI0016806 Homo sapiens miR-4460 stem-loop        25.1    0.24 
[761]hsa-mir-323a  MI0000807 Homo sapiens miR-323a stem-loop          23.3    0.88 
[407]hsa-mir-15b  MI0000438 Homo sapiens miR-15b stem-loop            21.4    3.2  


>[15243]hsa-mir-4460 MI0016806 Homo sapiens miR-4460 stem-loop
Length=86

 Score = 25.1 bits (13),  Expect = 0.24
 Identities = 13/13 (100%), Gaps = 0/13 (0%)
 Strand=Plus/Plus

Query  73  TCCTCTTTGCAGT  85
           |||||||||||||
Sbjct  35  TCCTCTTTGCAGT  47


>[761]hsa-mir-323a MI0000807 Homo sapiens miR-323a stem-loop
Length=86

 Score = 23.3 bits (12),  Expect = 0.88
 Identities = 12/12 (100%), Gaps = 0/12 (0%)
 Strand=Plus/Plus

Query  74  CCTCTTTGCAGT  85
           ||||||||||||
Sbjct  67  CCTCTTTGCAGT  78


>[407]hsa-mir-15b MI0000438 Homo sapiens miR-15b stem-loop
Length=98

 Score = 21.4 bits (11),  Expect = 3.2
 Identities = 11/11 (100%), Gaps = 0/11 (0%)
 Strand=Plus/Plus

Query  13  CATGGTTTACA  23
           |||||||||||
Sbjct  31  CATGGTTTACA  41



Lambda      K        H
    1.33    0.621     1.12 

Gapped
Lambda      K        H
    1.28    0.460    0.850 

Effective search space used: 8930877


  Database: homo-hairpin.fasta
    Posted date:  Sep 23, 2016  6:16 PM
  Number of letters in database: 154,002
  Number of sequences in database:  1,881



Matrix: blastn matrix 1 -2
Gap Penalties: Existence: 0, Extension: 2.5