BLASTN 2.3.0+
Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DNA sequences", J
Comput Biol 2000; 7(1-2):203-14.
Database: homo-hairpin.fasta
1,881 sequences; 154,002 total letters
Query= TACCCAGCTAAAGCGGCTGAACACATTTACTCTCTGGCAGTGTTTAAAAGTATCTGTTTTTCTCATAT
TGTTTTATTTTAATTTTTTCTGGATCAAGG
Length=98
Score E
Sequences producing significant alignments: (Bits) Value
[76]hsa-mir-22 MI0000078 Homo sapiens miR-22 stem-loop 25.1 0.28
[15813]hsa-mir-4742 MI0017380 Homo sapiens miR-4742 stem-loop 23.3 1.0
[15785]hsa-mir-4717 MI0017352 Homo sapiens miR-4717 stem-loop 21.4 3.7
[2907]hsa-mir-491 MI0003126 Homo sapiens miR-491 stem-loop 21.4 3.7
>[76]hsa-mir-22 MI0000078 Homo sapiens miR-22 stem-loop
Length=85
Score = 25.1 bits (13), Expect = 0.28
Identities = 13/13 (100%), Gaps = 0/13 (0%)
Strand=Plus/Plus
Query 2 ACCCAGCTAAAGC 14
|||||||||||||
Sbjct 44 ACCCAGCTAAAGC 56
>[15813]hsa-mir-4742 MI0017380 Homo sapiens miR-4742 stem-loop
Length=85
Score = 23.3 bits (12), Expect = 1.0
Identities = 15/16 (94%), Gaps = 1/16 (6%)
Strand=Plus/Minus
Query 43 TTT-AAAAGTATCTGt 57
||| ||||||||||||
Sbjct 34 TTTAAAAAGTATCTGT 19
>[15785]hsa-mir-4717 MI0017352 Homo sapiens miR-4717 stem-loop
Length=72
Score = 21.4 bits (11), Expect = 3.7
Identities = 11/11 (100%), Gaps = 0/11 (0%)
Strand=Plus/Plus
Query 36 GGCAGTGTTTA 46
|||||||||||
Sbjct 1 GGCAGTGTTTA 11
Score = 21.4 bits (11), Expect = 3.7
Identities = 11/11 (100%), Gaps = 0/11 (0%)
Strand=Plus/Minus
Query 36 GGCAGTGTTTA 46
|||||||||||
Sbjct 72 GGCAGTGTTTA 62
>[2907]hsa-mir-491 MI0003126 Homo sapiens miR-491 stem-loop
Length=84
Score = 21.4 bits (11), Expect = 3.7
Identities = 11/11 (100%), Gaps = 0/11 (0%)
Strand=Plus/Minus
Query 1 TACCCAGCTAA 11
|||||||||||
Sbjct 16 TACCCAGCTAA 6
Lambda K H
1.33 0.621 1.12
Gapped
Lambda K H
1.28 0.460 0.850
Effective search space used: 10440321
Database: homo-hairpin.fasta
Posted date: Sep 23, 2016 6:16 PM
Number of letters in database: 154,002
Number of sequences in database: 1,881
Matrix: blastn matrix 1 -2
Gap Penalties: Existence: 0, Extension: 2.5